
Abstract

We describe the synthesis of a series of 1 -aryl-2,3-dialkyl-1,4,5,6-tetrahydropyrimidinium salts $\mathbf{1}$, by alkylation of the corresponding 1,4,5,6-tetrahydropyrimidines $\mathbf{2}$. We analyze the changes in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds $\mathbf{2}$ induced by protonation and quaternization. The results of an ab initio theoretical study on amidine $\mathbf{2 a}$, and the cations resulting from its protonation $\left(\mathbf{2} \mathbf{a H}^{+}\right)$and quaternization $\left(\mathbf{1} \mathbf{a}^{+}\right)$are presented. A qualitative correlation was found between ${ }^{13} \mathrm{C}$ NMR and theoretical data in the case of protonation. The influence of the substitution patterns in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds $\mathbf{1}$ is also discussed.

J. Heterocyclic Chem., 42, 535 (2005).

Introduction.
Cyclic amidinium salts have been studied as models of the natural cofactor N^{5}, N^{10}-methenyltetrahydrofolic acid, involved in biochemical transfer of one carbon units at the oxidation level of formic acid [1]. Such reaction takes place via N^{10}-formyltetrahydrofolic acid, which plays a key role in the synthesis of purine nucleotides [2]. In an attempt to mimic the biological processes, transference of C2 unit to several nucleophiles was investigated in cyclic amidinium salts in which C 2 is linked to two nitrogen atoms of different basicities, as occurs in the natural cofactor $[3,4]$. Such compounds were also employed as synthetic intermediates for the preparation of selectively substituted alkylenediamine derivatives [3,5-7]. The major part of the research in this area is devoted to 1 H -4,5-dihydroimidazolium salts [3,5], while six membered homologues have been less studied [6,7]. Both acyclic and sixmembered cyclic amidines and also their quaternary salts have found application as suitable probes to evaluate the importance of stereoelectronic effects in the hydrolysis of tetrahedral intermediates [8]. 1,3-Dimethyl-5-phenyl-1,4,5,6-tetrahydropyrimidinium ion was studied in order to assess the operativity of stereoelectronic control in the formation of tetrahedral intermediates derived from additions of carbon nucleophiles to nitrogen heterocycles [9].

In previous work we reported the alkaline hydrolysis of 1-aryl-3-alkyl-2-unsubstituted-1,4,5,6-tetrahydropyrimidinium salts [10]. The regioselective opening of the heterocyclic ring was analyzed in the light of the stereoelectronic control theory, with the aid of theoretical calculations. In connection to our investigation about nucleophilic additions and related stereoelectronic effects in amidinium systems, we recently needed to prepare some 2-alkyltetrahydropyrimidines and their quaternary salts. Due to our previous work on the spectral and stereochemical features of six-membered 1,3-diazaheterocycles [11], we were also interested in evaluating the perturbations derived from protonation and alkylation of the parent amidines. The effects of protonation and quaternization on the spectral
features of nitrogen containing heterocyclic compounds have been studied in detail, employing theoretical calculations in some cases. The reported data are devoted to aromatic heterocycles such as pyridine and diazines [12], and also to saturated azaheterocyles like piperidine and its derivatives and pyrrolidine [13]. To our knowledge, however, partially saturated heterocycles like cyclic amidines have not been investigated yet. A clear understanding of steric and electronic features operating in such systems, and the perturbations induced by protonation and quaternization of the amidine functionality seemed therefore interesting. In this sense, NMR spectroscopy represents a valuable probe for the study of conformational and electronic features of organic compounds. Theoretical studies are also a helpful tool to investigate such characteristics.

Here we present the synthesis of a series of 1-aryl-2,3-dialkyl-1,4,5,6-tetrahydropyrimidinium salts 1a-i and their NMR spectroscopic characterization. We analyze the effects of protonation and quaternization of the heterocyclic nucleus in the light of theoretical calculations performed with an ab initio method. We also discuss the influence of the substitution patterns in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds $\mathbf{1}$.

Results and Discussion.
1-Aryl-2,3-dialkyltetrahydropyrimidinium salts 1 were synthesized by alkylation of the corresponding tetrahydropyrimidines 2, themselves obtained by cyclization of aminoamides 3 (Scheme I). Physical constants and MS data of salts 1a-i are given in the experimental section. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra will be discussed separately.

We examined first the changes induced by protonation and quaternization on the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of tetrahydropyrimidine 2a, taken as model compound. For this purpose, resonances of compounds 2a and 1a were unequivocally assigned by means of the corresponding HMQC and HMBC spectra, with the exception of 2^{\prime} - and 4'- signals of the phenyl ring in 1a, which appear as a broad singlet in the proton spectrum. Those resonances

Scheme 1

(3)
(2)
(1)

Compound 1,2	Ar	R^{1}	R^{2}
a	$\mathrm{C}_{6} \mathrm{H}_{5}$	tert-C $\mathrm{C}_{4} \mathrm{H}_{9}$	CH_{3}
\mathbf{b}	$4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$	tert- $\mathrm{C}_{4} \mathrm{H}_{9}$	CH_{3}
\mathbf{c}	$4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	tert- $\mathrm{C}_{4} \mathrm{H}_{9}$	CH_{3}
\mathbf{d}	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	tert- $\mathrm{C}_{4} \mathrm{H}_{9}$	CH_{3}
\mathbf{e}	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	iso- $\mathrm{C}_{3} \mathrm{H}_{7}$	CH_{3}
\mathbf{f}	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	CH_{3}
\mathbf{g}	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	CH_{3}	CH_{3}
h	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{C}_{2} \mathrm{H}_{5}$
\mathbf{i}	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	iso- $\mathrm{C}_{3} \mathrm{H}_{7}$

[a](averaged.) PPSE/Cl CH_{2}, reflux, 6 hs ; [b] $\mathrm{R}^{2} \mathrm{I} / \mathrm{Cl}_{2} \mathrm{CH}_{2}$, Reflux, 1-6 hs.
were assigned by comparison with the aromatic signals of compounds $\mathbf{1 b}, \mathbf{c}, \mathbf{d}$ (see below). ${ }^{1} \mathrm{H}$ NMR spectra of tetrahydropyrimidine $\mathbf{2 a}$, its trifluoroacetate $\mathbf{2 a H}$ and quaternary salt 1a are listed in Table I.

For a better understanding of the spectral features of amidine $\mathbf{2 a}$ and amidinium cations $\mathbf{2 a H}{ }^{+}$and $\mathbf{1 a}^{+}$, the electron delocalization in such systems must be considered. In the tetrahydropyrimidine, the presence of a phenyl substituent on N1 results in a cross-conjugated system where competitive amidine and arylamine-type electron delocalization are possible (Scheme II, structures I and II, respectively). A comparison between the aromatic chemical shifts of compound 2a and N-phenyltrimethylenediamine ($\mathrm{H} 2: 6.44$, H3,5: 7.17, H4: 6.69 ppm) [14] shows that shielding of the ortho and para hydrogen atoms is less significative in the amidine. This would be the consequence of competitive amidine-like resonance, enhanced by steric hindrance of the vicinal 2-tert-butyl group, which forces the phenyl group out of the plane of the amidine system. To further study resonance and steric effects in this heterocycle, we performed the complete optimization of compound 2a using the HF 6$31 G^{*}$ method [15], and examined some relevant geometric parameters. The calculated N1-C2 bond length in 2a (1.416 \AA) is longer than the one measured by X-ray diffraction for the $\mathrm{C}-\mathrm{NH}_{2}$ bond of acetamidine ($1.344 \AA$) [16], while C2N 3 distance $(1.256 \AA$) is shorter than the corresponding

Table I
${ }^{1} \mathrm{H}$ NMR Spectra of compounds $\mathbf{2 a}, \mathbf{2 a H}, \mathbf{1 a}$

Scheme II

$\mathrm{C}=\mathrm{N}$ bond in the acyclic amidine ($1.298 \AA$). Besides, dihedral angle $\mathrm{C}^{\prime}{ }^{\prime}-\mathrm{C} 1^{\prime}-\mathrm{N} 1-\mathrm{C} 6$ has a calculated value of -102.9° in 2a. These results suggest that, due to the steric effect of the tert-butyl, aniline-type resonance is partially inhibited, but this does not result in an enhanced participation of the N1 lone pair in amidine-type resonance.

Data reported in Table I indicate that both protonation and quaternization induce a paramagnetic shift of all the ${ }^{1} \mathrm{H}$ resonances, the effect of N -alkylation being more pronounced. An analogous effect upon protonation was previously reported by Pugmire for pyridine and diazines [12] and by Morishima for piperidine and pyrrolidine [13]. The observed deshielding was attributed to a predominance of polarization effects due to the presence of a positively charged nitrogen atom in the cations [13]. In our case, however, changes in electron delocalization induced by N substitution may additionally be involved in the observed shifts. In order to understand resonance effects in the amidinium salts, we performed a geometry optimization of cations $\mathbf{2 a H} \mathbf{H}^{+}$and $\mathbf{1} \mathbf{a}^{+}$, employing the same method as for the amidine. The resulting optimized structures showed very close values for $\mathrm{N} 1-\mathrm{C} 2$ and $\mathrm{C} 2-\mathrm{N} 3$ bond distances ($\mathbf{2 a H}^{+}: 1.324$ and $1.317 \AA, \mathbf{1 a}^{+}: 1.337$ and $1.326 \AA$, respectively). On the other hand, N1-C1' bond was comparatively longer in the cations than in the parent amidine (2a: $1.427 \AA, \mathbf{2 a H}^{+}: 1.448 \AA, \mathbf{1 a}^{+}: 1.447 \AA$, respectively). Both changes suggest that electron delocalization involving the amidinium system (Scheme II, structures IV, V) will predominate in the cations. In fact, the small shielding effect shown by the 2- and 4-phenyl hydrogen atoms in the amidine disappears upon N-substitution, indicating the loss of aniline-type resonance. The amidinium moiety becomes thus an electron withdrawing group acting on the phenyl ring mainly by inductive effect.
The ${ }^{13} \mathrm{C}$ spectra of compounds $\mathbf{2 a}, \mathbf{2 a H}$ and $\mathbf{1 a}$ are presented in Table II. At variance with ${ }^{1} \mathrm{H}$ resonances, which were all shifted to higher frequencies by N3 substitution,
the effect on ${ }^{13} \mathrm{C}$ chemical shifts is different for protonation than for quaternization. Protonation of compound 2a induced deshielding of C2, C4, C6 and shielding of the tertbutyl carbons, C 5 and C 1 '. In saturated five and six-membered azaheterocycles [13] and also in acyclic aliphatic amines [17], protonation induces a diamagnetic shift of primary and secondary carbons α to the nitrogen atom, while tertiary and quaternary α carbons are deshielded. This was explained considering that N -protonation is accompanied by electronic redistribution with polarization of $\mathrm{C}-\mathrm{H}$ bonds, producing $\mathrm{C}(\delta-)-\mathrm{H}(\delta+)$ structures, and thus electron density on the hydrogen atoms is transmitted through the hydrocarbon chain towards the positively charged nitrogen atom. Therefore, electron density on the carbon atoms remains constant or may actually increase. Other interesting features described by Morishima were the alternation of shielding and deshielding effects along the hydrocarbon chain and the conformational dependence of the protonation induced ${ }^{13} \mathrm{C}$ shifts. Both effects were reproduced by the author by calculation of the electron densities on C and H atoms using the semiempirical method CNDO/2. At variance with the reported data, in our case protonation induces an unexpected deshielding of the α carbon atoms. In order to understand the effects of protonation and quaternization on the ${ }^{13} \mathrm{C}$ resonances of tetrahydropyrimidine $\mathbf{2 a}$, we calculated the atom charges of the neutral molecule and the corresponding cations derived from its protonation and quaternization ($\mathbf{2} \mathbf{a H}^{+}$and $\mathbf{1 a}^{+}$, respectively), using the HF 6-31G* method (Table III). An analysis of the results shows a correlation between changes in atomic charges and shielding/ deshielding effects on the ${ }^{13} \mathrm{C}$ resonances of $\mathbf{2 a}$ and $\mathbf{2 a H} \mathbf{H}^{+}$. The correlation is only qualitative for protonation, and does not hold for quaternization. In the latter case, the effect of changes in the electron densities of the carbon atoms are probably overcome by standard β and γ-shifts to higher frequencies due to the presence of a methyl group on N3 [18].

Table II
${ }^{13}$ C NMR Spectra of Compounds $\mathbf{2 a}, \mathbf{2 a H}, \mathbf{1 a}$

Compd.	C4	C6	C5	C2	$C\left(\mathrm{CH}_{3}\right)_{3}$	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	$\mathrm{N}-\mathrm{CH}_{3}$		Aromatic		
								1^{\prime}	2^{\prime}	$3 '$	$4 '$
2a	46.3	53.3	21.9	167.9	40.4	31.2	-	149.8	127.0	129.4	125.4
2 aH	55.1	55.1	19.2	170.3	39.8	29.3	-	142.5	127.9 and 130.1		
1a	54.5	55.1	21.0	175.7	41.4	30.7	45.9	145.2	127.61	130.4	129.1

Table III
Selected HF 6-31G* Calculated Atom Charges for Compound 2a and Cations $\mathbf{2 a H}{ }^{+}, \mathbf{1 a}^{+}$

| Compd. | C 4 | C 6 | C 5 | C 2 | $C\left(\mathrm{CH}_{3}\right)_{3}$ | $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}[\mathrm{a}]$ | Aromatics
 $1 '$ | | $2^{\prime}[\mathrm{a}]$ | $3^{\prime}[\mathrm{a}]$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $4^{\prime} \mathrm{l}$

Table IV
${ }^{1}$ H NMR Spectra of 1-Aryl-2,3-Dialkyl-1,4,5,6-tetrahydropyrimidinium Iodides $\mathbf{1 b} \mathbf{b}-\mathbf{k}$

[a](averaged.): exchangeable assignment.
${ }^{1} \mathrm{H}$ NMR spectra of tetrahydropyrimidinium salts $\mathbf{1 b} \mathbf{- i}$ are presented in Table IV, together with compounds $\mathbf{1 j} \mathbf{j}$ [19] and $\mathbf{1 k}[6]$ included for comparison. Signals corresponding to the aromatic substituent and to the heterocyclic ring were attributed by analogy with the unequivocal assignment of compound 1a (Table I). Some resonances, however, were assigned only tentatively, due to their very close
values. Analysis of data reported in Table IV indicates that the more significant effects both on the trimethylene portion, the N-alkyl substituent and the aromatic moiety are associated to the substituent in position $2\left(\mathrm{R}^{1}\right)$.

A comparison between 2-alkyl derivatives 1d-g and 2phenyl derivative $\mathbf{1 k}$ shows that the presence of a 2 -aryl group shifts the signals of the trimethylene portion to
higher frequencies, while a shielding effect on N -methyl and 1-aryl resonances is observed. This may be explained by considering that the steric tension due to the presence of vicinal aryl substituents leads to twisting of such groups with respect to the ring, causing the 1 -aryl and the N -methyl hydrogen atoms to be within the shielding region of the 2-phenyl group.

Comparing 2-tert-butyl derivatives with different para substituents 1a-d, a progressive deshielding of the signals is observed on going from an electron donor such as $\mathrm{CH}_{3} \mathrm{O}$ to a strong electron withdrawing substituent.
${ }^{13}$ C NMR spectra of tetrahydropyrimidinium salts $\mathbf{1 b} \mathbf{- i}$ are presented in Table V together with compounds $\mathbf{1} \mathbf{j}, \mathbf{k}$, included for comparison. Resonances corresponding to C2, C4, C5 and C6 were assigned by analogy with compound 1a. For all the compounds, resonances corresponding to C 4 and C 6 show very close values and the proposed assignment is therefore tentative. For salts 1a-d, signals corresponding to the 1 -aryl carbons were attributed taking into account standard chemical shift contributions of the para substituents in benzene rings [20]. A comparison between salts $\mathbf{1 g}, \mathbf{j}$ shows that replacement of the 2-hydro-
gen atom by a methyl group induces a deshielding of $c a$. 10 ppm in C2 as a consequence of the α-effect. C4 and C6 signals are also shifted $c a .5 \mathrm{ppm}$ to higher frequencies, while the N-methyl resonance is shielded. This can be explained taking into account the dihedral angle dependence of the γ-effect, which derives in a shielding effect when the mentioned angle between the methyl group and the considered carbon atom is 0°, and in the opposite effect when the angle is near 180°. Replacement of 2-methyl by a phenyl group (compounds $\mathbf{1 g}, \mathbf{k}$) shifts C 2 resonance to higher frequencies, due to delocalization of the positive charge density on C2 by the 2-aryl substituent.

For compounds $\mathbf{1 d - g}$, the increasing branching of R^{1} induces the expected deshielding of C 2 (β-effect). C 4 and C6 are also shifted to higher frequencies, while the effect on the N -methyl is variable. For compounds $\mathbf{1 h}-\mathbf{i}$ increasing substitution on the N3-methyl induces a diamagnetic shift in C 2 signal (γ-effect). The nature of the para substituent in the 1-aryl modifies the position of C 2 signal, which is shielded in the case of the methoxy derivative $\mathbf{1 b}$ and deshielded for $\mathrm{G}=\mathrm{NO}_{2}$. This effect can be related to an increase in the positive charge density of

Table V
${ }^{13}$ C NMR Spectra of 1-Aryl-2,3-Dialkyl-1,4,5,6-tetrahydropyrimidinium iodides 1a-h

Compd.	G	R^{1}	R^{2}	C2	C4	C6	C5	Ar				R ${ }^{1}$	R^{2}
								1^{\prime}	2^{\prime}	3^{\prime}	4^{\prime}		
1b	$\mathrm{CH}_{3} \mathrm{O}$	$\begin{gathered} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \\ \text { (d)(e) } \end{gathered}$	CH_{3}	174.8	$\begin{gathered} 53.8 \\ {[\mathrm{a}]} \end{gathered}$	$\begin{gathered} 54.7 \\ {[\mathrm{a}]} \end{gathered}$	19.4		$\mathrm{CH}_{3} \mathrm{O}$	55.5 [a](averaged.)		$\begin{aligned} & \text { d: } 40.8 \\ & \text { e: } 31.5 \end{aligned}$	45.3
								137.3	128.3	115.0	159.5		
1c	NO_{2}	$\begin{gathered} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \\ \text { (d)(e) } \end{gathered}$	CH_{3}	176.3	$\begin{gathered} 54.4 \\ {[\mathrm{a}]} \end{gathered}$	$\begin{gathered} 54.5 \\ {[\mathrm{a}]} \end{gathered}$	20.3	$\begin{gathered} 150.1 \\ {[\mathrm{a}]} \end{gathered}$	128.5	125.4	$\begin{gathered} 146.9 \\ {[\mathrm{a}]} \end{gathered}$	$\begin{aligned} & \mathrm{d}: 41.4 \\ & \mathrm{e}: 31.5 \end{aligned}$	45.7
1d	Cl	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ (d)(e)	CH_{3}	175.3	$\begin{gathered} 54.1 \\ {[\mathrm{a}]} \end{gathered}$	$\begin{gathered} 54.7 \\ {[\mathrm{a}]} \end{gathered}$	20.5	143.1	128.7	130.3	134.8	$\begin{aligned} & \mathrm{d}: 41.1 \\ & \mathrm{e}: 31.5 \end{aligned}$	45.6
1e	Cl	$\begin{gathered} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \\ \text { (d) (e) } \end{gathered}$	CH_{3}	167.8	$\begin{gathered} 50.7 \\ {[\mathrm{a}]} \end{gathered}$	$\begin{gathered} 51.3 \\ {[\mathrm{a}]} \end{gathered}$	19.8	140.9	128.4	130.8	135.7	$\begin{gathered} \mathrm{d}: 31.9 \\ \mathrm{e}: 19.00 \end{gathered}$	41.8
1f	Cl	$\mathrm{CH}_{2} \mathrm{CH}_{3}$ (d) (e)	CH_{3}	165.9	$\begin{gathered} 49.3 \\ {[\mathrm{a}]} \end{gathered}$	$\begin{gathered} 50.7 \\ {[\mathrm{a}]} \end{gathered}$	19.7	140.2	128.6	130.4	135.5	$\begin{aligned} & \mathrm{d}: 24.5 \\ & \mathrm{e}: 10.5 \end{aligned}$	41.4
1g	Cl	CH_{3}	CH_{3}	162.5	$\begin{gathered} 49.5 \\ {[\mathrm{a}]} \end{gathered}$	$\begin{gathered} 50.6 \\ {[\mathrm{a}]} \end{gathered}$	$\begin{gathered} 19.6 \\ {[\mathrm{a}]} \end{gathered}$	140.6	128.6	130.4	135.4	19.7 [a](averaged.)	42.2
1h	Cl	$\mathrm{CH}_{2} \mathrm{CH}_{3}$ (d) (e)	$\begin{gathered} \mathrm{CH}_{2} \mathrm{CH}_{3} \\ (\mathrm{f})(\mathrm{g}) \end{gathered}$	165.2	$\begin{gathered} 48.7 \\ {[\mathrm{a}]} \end{gathered}$	$\begin{gathered} 51.3 \\ {[\mathrm{a}]} \end{gathered}$	19.6	140.2	128.8	130.7	135.9	$\begin{aligned} & \text { d: } 24.0 \\ & \text { e: } 11.6 \end{aligned}$	$\begin{aligned} & \mathrm{f}: 45.9 \\ & \mathrm{~g}: 13.2 \end{aligned}$
1i	Cl	$\mathrm{CH}_{2} \mathrm{CH}_{3}$ (d) (e)	$\underset{(\mathrm{f})(\mathrm{g})}{\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}}$	164.2	$\begin{gathered} 51.5 \\ {[\mathrm{a}]} \end{gathered}$	$\begin{gathered} 52.7 \\ {[\mathrm{a}]} \end{gathered}$	19.7	140.4	128.9	130.5	135.6	$\begin{aligned} & \mathrm{d}: 24.1 \\ & \mathrm{e}: 11.5 \end{aligned}$	$\begin{aligned} & \mathrm{f}: 39.5 \\ & \mathrm{~g}: 19.7 \end{aligned}$
1j	Cl	H	CH_{3}	152.5	$\begin{gathered} 45.9 \\ {[\mathrm{a}]} \end{gathered}$	$\begin{gathered} 45.7 \\ {[\mathrm{a}]} \end{gathered}$	18.8	139.7	124.0	130.0	134.0	-	43.3
1k	Cl	$\mathrm{C}_{6} \mathrm{H}_{5}$	CH_{3}	161.9	48.0	49.8	19.0	140.2			133.3	$\begin{aligned} & 1^{\prime \prime}: 127.3 \\ & 4^{\prime \prime}: 130.4 \end{aligned}$	42.2

128.6, 128.4, 128.1
[a](averaged.): exchangeable assignment.

C2 due to the progressively higher inductive electron withdrawing effect of the 1 -aryl substituent. This influence is stronger for quaternary carbons, where no compensatory release of electron density by attached hydrogen atoms can operate [13].

EXPERIMENTAL

Melting points were taken on a Büchi capillary apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectra were recorded on a Bruker MSL 300 MHz spectrometer. Deuteriochloroform was used as the solvent, and the standard concentration of the samples was $10 \mathrm{mg} / \mathrm{ml}$. HMQC and HMBC spectra were recorded in an AVANCE DRX300 spectrometer. Spectral data for compound $\mathbf{2 a H}$ were obtained by addition of a twofold molar excess of trifluoroactic acid to a sample of compound 2a. Chemical shifts are reported in ppm (δ) relative to TMS as an internal standard. Splitting multiplicities are reported as singlet (s), broad signal (bs), doublet (d), double doublet (dd), triplet (t), double triplet (dt), quartet (q), pentet (p) and multiplet (m). Electron impact mass spectra were recorded with a GC-MS Shimadzu QP-1000 spectrometer operating at 20 eV . Tlc analyses were carried out on aluminium sheets Alumina $60 \mathrm{~F}_{254}$ using chloroform as the solvent. Reagents, solvents and starting materials were purchased from standard sources and purified according to literature procedures. 1-Aryl-2-alkyl-1,4,5,6-tetrahydropyrimidines 2a-i were described in the literature [21].

1-Aryl-2,3-dialkyl-1,4,5,6-tetrahydropyrimidinium Iodides $\mathbf{1}$.
General Procedure.
A mixture of 1,4,5,6-tetrahydropyrimidine (2) (5 mmol) and alkyl iodide (6 mmol) in anhydrous methylene chloride (50 ml) was refluxed protected from moisture. The reaction was monitored by TLC (chloroform:methanol 9:1) until disappearance of the starting material. The solution was evaporated in vacuo and the residue purified by recrystalization or by flash column chromatography (silica gel, chloroform:methanol 9:1) to yield compounds ($\mathbf{1 a - i}$). ${ }^{1} \mathrm{H} \mathrm{nmr}$ data of compounds $\mathbf{1 a}, \mathbf{b}-\mathbf{k}$ are given in Tables I and IV, respectively. ${ }^{13} \mathrm{C} \mathrm{nmr}$ data of compounds $\mathbf{1 a}, \mathbf{b}-\mathbf{k}$ are given in Tables II and V, respectively. Yields, physical data and elemental analyses are as follows:
1-Phenyl-2-tert-butyl-3-methyl-1,4,5,6-tetrahydropyrimidinium Iodide (1a).
This compound was obtained with 77% yield; $\mathrm{mp} 96-98{ }^{\circ} \mathrm{C}$ (anhydrous isopropanol); MS: m/z 231 (M-127+).
Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{I}: \mathrm{C}, 50.29 ; \mathrm{H}, 6.47$; $\mathrm{N}, 7.82$. Found: C, 50.12; H, 6.45; N, 7.84.

1-(4-Methoxyphenyl)-2-tert-butyl-3-methyl-1,4,5,6-tetrahydropyrimidinium iodide (1b).

This compound was obtained as an oil (74\%); MS: m/z 261 (M-127+).
Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{OI}$: C, 49.49; H, 6.49; N, 7.21. Found: C, 49.56; H, 6.52; N, 7.20.
1-(4-Nitrophenyl)-2-tert-butyl-3-methyl-1,4,5,6-tetrahydropyrimidinium Iodide (1c).
This compound was obtained with 69% yield; mp 213-215 ${ }^{\circ} \mathrm{C}$ (anhydrous tetrahydrofurane); MS: m/z 276 (M-127+).

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}$ I: C, $44.68 ; \mathrm{H}, 5.50 ; \mathrm{N}, 10.42$. Found: C, 44.80; H, 5.48; N, 10.38 .

1-(4-Chlorophenyl)-2-tert-butyl-3-methyl-1,4,5,6-tetrahydropyrimidinium Iodide (1d).

This compound was obtained with 79% yield; mp $102-104^{\circ} \mathrm{C}$ (anhydrous isopropanol); MS: m/z 265 (M-127+).

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{CII}$: C, $45.88 ; \mathrm{H}, 5.65 ; \mathrm{N}, 7.13$. Found: C, 45.82; H, 5.66; N, 7.11.

1-(4-Chlorophenyl)-2-iso-propyl-3-methyl-1,4,5,6-tetrahydropyrimidinium Iodide (1e).

This compound was obtained as an oil (73\%); MS: m/z 251 (M-127+).

Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{CII}: \mathrm{C}, 44.40 ; \mathrm{H}, 5.32 ; \mathrm{N}, 7.40$. Found: C, 44.29; H, 5.34; N, 7.39.
1-(4-Chlorophenyl)-2-ethyl-3-methyl-1,4,5,6-tetrahydropyrimidinium Iodide (1f).

This compound was obtained in 81% yield; $m p 187-188^{\circ} \mathrm{C}$ (anhydrous isopropanol); MS: m/z 237 (M-127+).

Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2}$ CII: C, 42.82; H, 4.98; N, 7.68. Found: C, 42.71; H, 5.00; N, 7.69.

1-(4-Chlorophenyl)-2,3-dimethyl-1,4,5,6-tetrahydropyrimidinium Iodide (1g).

This compound was obtained in 83% yield; $\mathrm{mp} 258-260^{\circ} \mathrm{C}$ (anhydrous isopropanol); MS: m/z 223 (M-127+).

Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{ClI}: \mathrm{C}, 41.11 ; \mathrm{H}, 4.60 ; \mathrm{N}, 7.99$. Found: C, 41.20; H, 4.59; N, 8.00.

1-(4-Chlorophenyl)-2,3-diethyl-1,4,5,6-tetrahydropyrimidinium Iodide ($\mathbf{1 h}$).

This compound was obtained in 82% yield; $\mathrm{mp} 144-145^{\circ} \mathrm{C}$ (anhydrous isopropanol); MS: m/z 251 (M-127+).

Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{CII}: \mathrm{C}, 44.40 ; \mathrm{H}, 5.32 ; \mathrm{N}, 7.40$. Found: C, 44.45; H, 5.30; N, 7.42.

1-(4-Chlorophenyl)-2-ethyl-3-iso-propyl-1,4,5,6-tetrahydropyrimidinium Iodide (1i).

This compound was obtained in 54% yield; $\mathrm{mp} 174-176^{\circ} \mathrm{C}$ (anhydrous isopropanol); MS: m/z 265 (M-127+).

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{ClI}: \mathrm{C}, 45.88 ; \mathrm{H}, 5.65 ; \mathrm{N}, 7.13$. Found: C, 45.75; H, 5.65; N, 7.15.

Acknowledgement.

This work was financially supported by the Universidad de Buenos Aires. The colaboration of Dr. María B. García is also gratefully acknowledged.

REFERENCES AND NOTES

[^0]Chem. Commun., 117 (1979); H. Bieraugel, R. Plemp, H. C. Hiemstra, and U. K. Pandit, Tetrahedron, 39, 3971 (1983); M. W. Anderson, R. C. F. Jones and J. Saunders, J. Chem. Soc., Chem. Commun., 282 (1982); M. W. Anderson, J. Raymond, and J. Saunders, J. Chem. Soc., Perkin Trans. 1, 1995 (1986); S. J. Benkovic, T. H. Barrows and P. R. Farina, J. Am. Chem. Soc., 95, 8414 (1973); B. A. Burdick, P. A. Benkovic and S. J. Benkovic, J. Am. Chem. Soc., 99, 5716 (1977).
[4] A. R. Stoit and U. K. Pandit, Tetrahedron, 19, 6187 (1988).
[5a] I. Perillo and S. Lamdan, J. Chem. Soc., Perkin Trans. 1, 894 (1975); [b] B. M. Fernández, A. M. Reverdito, G. Paolucci and I. A. Perillo, J. Heterocycl. Chem., 24, 1717 (1987); [c] B. Fernandez, I. Perillo and S. Lamdan, J. Chem. Soc., Perkin Trans. 1, 545 (1978); [d] A. Salerno, V. Ceriani and I. A. Perillo, J. Heterocyclic Chem., 1725 (1992); [e] A. Salerno, V. Ceriani and I. A. Perillo, J. Heterocyclic Chem., 34 709, (1997).
[6] A. M. Reverdito, L. R. Orelli, M. Dal Maso, I. A. Perillo and B. M. Fernández, J. Heterocyclic Chem., 28, 273 (1991).
[7] M. R. Dal Maso, L. R. Orelli and I. A. Perilo, J. Heterocyclic Chem., 31, 25, (1994),.
[8] C. L. Perrin, Acc. Chem. Res., 35, 28 (2002) and references therein.
[9] C. L. Perrin and D. B. Young, J. Am. Chem. Soc., 123, 4451 (2001).
[10] M. B. García, M. Zani, I. A. Perillo and L. R. Orelli, Heterocycles, 63, 2557 (2004).
[11a] M. B. García, I. A. Perillo and L. R. Orelli, J. Heterocyclic Chem., 38, 1209 (2001); [b] M. B. García, S. Grilli, L. Lunazzi, A. Mazzanti, J. Org. Chem., 66, 6679 (2001); [c] M. B. García, S. Grilli, L. Lunazzi, A. Mazzanti, Eur. J. Org. Chem., 23, 4018 (2002); [d] I. A. Perillo, M. B. García, J. A. Bisceglia and L. R. Orelli, J. Heterocyclic Chem., 39, 655 (2002); [e] M. L. Magri, N. Vanthuyne, C. Roussel, M. B. García and L. R. Orelli, J. Chromatogr. A, in press (2004).
[12a] R. J. Pugmire, D. M. Grant, J. Am. Chem. Soc., 90, 697 (1968); [b] R. J. Pugmire, D. M. Grant, J. Am. Chem. Soc., 90, 4232 (1968); [c] E. Breitmaier, K. -H. Spohn, Tetrahedron, 29, 1145 (1973).
[13] I. Morishima, K. Yoshikawa, K. Okada, T. Yonezawa, K. Goto, J. Am. Chem. Soc., 95, 165 (1973).
[14] L. R. Orelli, M. B. García, F. Niemevz and I. A. Perillo, Synth. Commun., 11, 1819 (1999).
[15] Gaussian 98, Revision A.9, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA (1998).
[16] S. Patai, "The chemistry of Amidines and Imidates", John Wiley and Sons, Ed. (1975).
[17] J. E. Sarneski, H. L. Suprenatant, F. K. Molen and C. N. Reilley, Anal. Chem., 47, 2116 (1975).
[18] K. Pihlaja and E. Kleinpeter, "Carbon-13 Chemical Shifts in Structural and Stereochemical Analysis", Wiley-VCH (1994).
[19] L. R. Orelli, M. B. García and I. A. Perillo, Heterocycles, 53, 2437 (2000).
[20] E. Pretsch, P. Bülmann, C. Affolter, "Structure Determination of Organic Compounds", Springer-Verlag, New York (2000).
[21] L. R. Orelli, F. Niemevz, M. B. García and I. A. Perillo, J. Heterocyclic Chem, 36, 105 (1999).

[^0]: [*] Author to whom correspondence should be addressed. E-mail: lorelli@ffyb.uba.ar.
 [1a] R. L. Blakey and S. J. Benkovic, eds., Folates and Pteridines, Vol. 1, Wiley, New York (1984), Vol. 2, John Wiley and Sons, New York (1985); [b] H. C. S. Wood, Comprehensive Organic Chemistry, Vol. 5, E. Haslam, ed, Chapter 24.3, Pergamon, Oxford (1979); [c] R. G. Mathew and J. T. Drummond, Chem. Rev., 90, 1275 (1990).
 [2] H. Kalasz, Mini-Rev. Med. Chem., 3, 175 (2003)
 [3] Among others: U. K. Pandit and H. Bieraugel, J. Chem. Soc.,

